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Abstract 

The leading term in the asymptotic expansion of  the 
isotropic component  of  the X-ray intensity scattered 
by a homogeneous  right circular cylindrical particle 
(of height H and diameter  D) can be written as: 
C~h-4[ST-2SB cos ( h H ) -  SL sin (hD)].  Here St., $8 
and Sr  denote respectively the lateral, the base and 
the total surface area of  the cylinder, while ~ is a 
normalizat ion factor. From this expression one is led 
to conjecture that the oscillatory deviations from the 
Porod law, originated by the two interface subsets 
which have the same normal and are separated by 6, 
are proport ional  to cos (h6) or to sin (h6) depending  
on whether the tangency points between one of the 
interphase subsets and the spheres of radius 6 centred 
on the opposite subset are elliptical or hyperbol ic  
respectively. It is proved that the conjecture is true 
and general expressions for the coefficients in front 
of the two oscillatory functions are obtained. 

Introduction 

Knowledge of the leading term in the asymptotic 
expansion of  the small-angle X-ray intensity [=  l ( h ) ]  
scattered by an amorphous  sample can be very useful 
in order to analyse experimental  data. Recently 
Ciccariello & Benedetti (1986) have shown that the 
oscillations observed in the Porod plots of  the 
intensities scattered by some glasses undergoing a 
demixing process (Will iams, Rindone & McKinstry,  
1981) are due to the spherical particles which origi- 
nated from an Ostwald r ipening mechan ism of 
nucleat ion and growth inside the metastable region.* 
The aforesaid analysis used the theoretical result 
(Ciccariello, 19851) that, under  some assumptions to 
be specified later, the leading term in the asymptotic 
expansion of the SAXS intensity can be written as 

2S t  1 2SII cos (h~) 
l(h)/4rrV(rl2) 4Vq)~cb2 h 4-t" 4Vq)~cI)2 h4 t-o. 

(1) 

*A comparison of the currently available theoretical methods 
of analysis of the SAXS intensities scattered by demixing glasses 
can be found in a more recent paper (Benedetti, Ciccarieilo & 
Fagherazzi, 1988) where further examples of oscillatory deviations 
are reported. 

1 This paper will be referred to as I in the following. 

On the r.h.s, of  ( 1 ),* the first contribution corresponds 
to the well known Porod law (Porod, 1952; Debye, 
Anderson & Brumberger,  1957) while the second one 
represents an oscillatory deviation from the latter. 
One should note that in the Porod plot of  the intensity 
[i.e. the plot of h4l(h) versus h], the ampl i tude  of 
the deviation does not fade away as h increases. 
Accordingly, we shall use deviation for any contribu- 
tion to the asymptotic expansion of the intensity 
which is different from the Porod term and shares 
the aforesaid property. 

In this paper  we address ourselves to the question 
of finding out the functional dependence  of the 
deviations as well as the interphase features which 
originate them. 

Of course, in order to find an answer to this question 
we have to assume that the interphase surface obeys 
some regularity conditions. Thus, we shall assume 
that the h -4 behaviour  is due to a fractal d imension  
of the interphase surface equal to two (Bale & 
Schmidt, 1984; Rojanski et al., 1986), in order that 
we might speak of a genuine Porod law. More 
definitely, we shall assume that the sample is made  
up of particles which are neither too small nor too 
large and that their boundar ies  are smooth but, poss- 
ibly, for a finite number  of corner and edges. We must 
now recall that in this framework the problem is 
related to a much more general problem, namely how 
the asymptotic behaviour  of the intensity scattered 
by a single particle is determined by the latter's shape. 
On the one hand this problem is much more difficult 
than the former since it requires the determinat ion 
of all the asymptotic terms. On the other hand it is 
too restrictive, requiring that the sample be dilute. 

* The meaning of the symbols involved in the equation is the 
following: V is the sample volume, q~ and 4~ 2 are the volume 
fractions of the two phases where the electronic density can be 
assumed to be constant, (r/2) denotes the mean squared electronic 
density fluctuation and ST is the total interphase surface area. The 
complete definition of ~ and S,I will be given later (see note on 
p. 89). Here we note only that they have the physical dimensions 
of a length and of a surface, respectively. Moreover, for a critical 
discussion on the assumption of a two-valued electronic density 
as well as on the meaning of asymptotic behaviour we refer to 
Ciccariello, Goodisman & Brumberger (1988). Finally, according 
to standard mathematical terminology, throughout the paper the 
symbol o will denote a contribution which, as h--, 0% decreases 
faster than the ones written down explicitly, while O(h-") denotes 
a contribution decreasing as h-'~. 
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This problem has been studied in a series of impor- 
tant papers* by Schmidt and collaborators 
throughout the sixties and the early seventies. In 
particular, Miller & Schmidt (1962) first pointed out 
that the asymptotic expansion of the intensity scat- 
tered by a cylindrical particle of arbitrary cross section 
shows oscillatory deviations from the Porod law when 
the right cross section has polygonal portions with 
sides which are parallel and opposite. They noted also 
that the resulting deviation from the Porod law was 
proportional to cos (hS), with 8 equal to the distance 
between the two opposite sides. In a subsequent 
paper, Schmidt (1965) showed that an oscillatory 
deviation is present also in the case of the right 
circular cylinder and that in this case it is proportional 
to sin (hS), where 8 now represents the diameter of 
the cylinder. In obtaining these results the cylindrical 
structure played an important role. Subsequently Wu 
& Schmidt removed this condition and, assuming that 
the particles had a convex and smooth shape (i.e. with 
no edges and corners), they worked out the leading 
terms of the scattered intensity up to contributions 
O(h-6). However, the hypothesis of convexity and 
smoothness rules out many interesting cases as, for 
instance, hollow spheres, tori and cylinders, and thus 
the problem of deviations from the Porod law does 
not find a complete and immediate answer from these 
results. However, the results of Miller and Schmidt 
on cylinders show the existence of deviations propor- 
tional both to cos (hS) and to sin (hS). Besides, Miller 
& Schmidt (1962) showed that the first behaviour 
arises from a finite discontinuity in the second-order 
derivative [ - y ~ ( r ) ]  of the correlation function of a 
cylinder, while Schmidt (1965) has shown that the 
second behaviour arises from a logarithmic diver- 
gence, present at r = D, in the y~(r) relevant to a right 
circular cylinder with diameter D. 

We recall now that in paper I we singled out the 
geometrical features of the interphase surface which 
yield discontinuities in 7~(r) under the more general 
assumptions stated at the beginning. We showed that, 
so long as a quantity ( - - ~ )  to be defined later [see 
(8)] is different from zero, one can have either finite 
discontinuities (called first order in order to stress 
the existence of finite left and right limits) or logarith- 
mic divergences. Moreover, in the first case, the 
explicit expression of the discontinuity was also 
reported and thus we can conclude that the deviation 
proportional to cos (hg) has already been determined 
in paper I. Since the term proportional to sin (hS) 
found by Schmidt (1965) resulted from a logarithmic 
divergence in T~(r), one should expect that this devi- 
ation will also be present in the more general situation 

* A complete list can be obtained from the references cited by 
Schmidt (1967) and Wu & Schmidt (1974). I am grateful to a 
referee for having brought to my attention the first papers of the 
series. 

we have considered in I. However, we have to be sure 
that the procedure can be applied to these more 
general geometrical configurations and we have to 
find the analytical expression of the coefficient in 
front of sin (h~). In this paper we carry through this 
job. It turns out that, but for a trivial modification, 
the coefficient coincides with the one obtained in I. 
Owing to the constraint on the quantity ~ alluded 
to above, strictly speaking this result does not give 
the complete answer to the problem of determining 
the most general deviation from the Porod law. 
However, we do not know any geometrical configur- 
ation not obeying the mentioned constraint (i.e. ~g~ 
0) and thus we are inclined to think that the answer 
to the problem can be considered physically 
exhaustive. 

The plan of the paper is as follows. In the next 
section, after reporting the general integral 
expressions of the second-order derivati,ce of the cor- 
relation function, we discuss the conditions which 
are responsible for a discontinuous behaviour of 
y~(r). There we show how the behaviour depends on 
the nature of the contact points between some sur- 
faces. In particular, we show that elliptical contact 
points generate finite discontinuities while hyperbolic 
contact points generate logarithmic divergences. The 
leading term in the asymptotic expansion of T'~(r) 
near the logarithmic singularity is evaluated in 
Appendix A. The r dependence is such that, like 
Schmidt (1965), one could use the lemma of Jones 
& Kline (1958) and quickly obtain the final result. 
However, we preferred a longer way with the hope 
that a more detailed discussion will make these issues 
easier and more familiar. In the third section we 
reobtain the correlation function for a right cylin- 
drical particle so as to apply the results of the second 
section on the location of the discontinuities and on 
their amplitudes. In the fourth section, we show how 
the logarithmic divergence is tackled and we evaluate 
the leading asymptotic term of the corresponding 
scattered intensity. In the final section, combining the 
previous analysis and the results of the second section, 
we obtain the general expression of the deviations 
from the Porod law. 

Genera l  results  on d iscont inui t ies  

For a two-component isotropic system the correlation 
function To(r) is given by [Debye et al. (1957) and 
equation (I.II.12)] 

T0(r)= 1 - P12(r)/~lqb2 (2a) 

Plz(r)-(gTrV) -1 ~3dvl ~ Pl(r~)o2(rl + r~) d~" 

(2b) 

Here pl(r) and p2(r) represent the characteristic func- 
• tions of phases 1 and 2 [i.e. pl(r) is equal to one or 

to zero depending on whether r is inside or outside 
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phase 1], and 03 is a unit vector which ranges over 
the set 12 of all possible directions. Ciccariello, Cocco, 
Benedetti & Enzo (1981) have shown that the second- 
order derivative of the correlation function is given by 

y~(r)=(47rVClg~cI92)-~ J 003 ~ OS~ j" dS2[~l(rl).03] 
g2 ,E X 

x [(~2(r2). 03] 6(r, + r03-r2), (3) 

which is equivalent to 

y'~(r)=(4~'Vr2Cp~2)-~dS~ ~ d1([~,.03(1)] 
.~ l ' ( r l ,  r) 

×cot {arc cos [~2(l).03(1)]}). (4a) 

In (3) and (4a), 2 denotes the interphase surface, ~, 
and c~2 are the unit vectors orthogonal to the 
infinitesimal surface elements dS~ and dS2 of 27 and 
oriented externally to phases 1 and 2 respectively, 
6 ( )  denotes the Dirac function, while F ( r , , r )  
denotes the curve* resulting from the intersection of 
,~ with the spherical surface [-O°(r , ,  r)], with radius 
r and centred at r~. Consequently, l represents the 
curvilinear coordinate on F of the point P2 where the 
corresponding dS2 in (3) is located, d'2(l) represents 
the normal to this element and o3(1) is the unit vector 
of the direction going from dS~ to dS2. The integrand 
of (4a) diverges only when &2(1) is parallel or anti- 
parallel to 03(1). However, the former divergence does 
not necessarily yield a divergence or a discontinuity 
in y'~(r) since we have still to integrate over dl and 
dS~. Exploiting the symmetry of (3) with respect to 
the exchange 1~2,  one sees that the former diver- 
gence is harmless when t~.03(l)# + 1. In these cases 
in fact, integrating (3) first with respect to r2, one 
would have obtained 

y'~(r)=(4~'Vr2@,~2)-'~dS2 ~ dl([d~2.~(1)] 
Y l ' ( r2 ,  r) 

× cot {arc cos [~,( l) .  03(l)]}). (4b) 

In this way the geometry of the two infinitesimal 
surfaces dS, at P~ and dS2 at P2 separated by a 
distance r can be described either by the infinitesimal 
element dl at P2 and the integrand of (4a) for dS~, 
or by the infinitesimal element d l at PI and the 
integrand of (4b) for dS2. In the latter case the 
integrand is not divergent and thus in the first case 
the divergence will cancel by integration. Clearly the 
argument can no longer be applied when (~. 03(1)= 
+1. Geometrically this condition means that the sur- 
face elements dS1 and dS2 have the same normal and 
thus t~, ~2 and o3 (1) are either parallel or antiparallel. 
The former geometry can also be characterized by 
saying that if we translate dS~ along its normal straight 

* Note that in general this will be formed by different closed 
curves. Therefore we should add an index to F for distinguishing 
them and add a summation on the r.h.s, of (4a). In order to simplify 
the notation we avoid this complication. 

line by r, dS, superimposes on dS2 or equivalently 
that the sphere 5~(r,, r) is tangent to dS2 and that the 
line connecting dS2 with the sphere's centre is 
orthogonal to dS,.  More briefly we shall say that dSl 
and dS2 are opposite and parallel. From now on the 
r values where this condition takes place, so that both 
the integrand of (4a) and that of (4b) are divergent, 
will be denoted by 6. In order to see whether this 
divergence survives after integration, we have to study 
the limit as r -  6 of the linear integral appearing on 
the r.h.s, of (4a), i.e. 

~ ( r , , r ) - =  ~ ([~,.03(l)] 
l ' ( r l ,  r) 

×cot {arccos[~2(l).03(1)]})dl. (5) 

The behaviour of this integral depends crucially on 
the nature of the contact between 27 and 5¢(r,, 8). 
Since 5°(r,, r) is a scalar quantity, we momentarily 
choose a Cartesian system with the origin at P~ and 
the z axis parallel to the direction going from P! to 
P2. The surfaces 27 and 5~(0, 6) will be tangent at the 
point P2, located on the positive z axis at a distance 

from the origin. In a suitable neighbourhood of the 
latter, the two surfaces can be represented by the 
equations 

z=fx(x,y)  (6a) 

z=fr (x , y )=(62-x2-y2)  '/2 (6b) 

Let us introduce the function F(x, y) defined as 

z=F(x,y)=-f ,~(x,y)- f / (x ,y) .  (7) 

Now, in a small neighbourhood of the contact point 
P2 and excluding the latter, it can happen that: (1 a) 
the contact is simple [the latter's definition will be 
given below (8)] and 27 always lies above 5e(0, 3), 
and then F(x, y) > 0; ( lb)  the contact is simple and 
27 lies always below ow(0, 8) and then F(x, y) < 0; (2) 
the contact is simple and 27 lies partly above and 
partly below 5e(0, 6); or (3) the contact is not simple. 

In cases (1), (2) and (3) one says that the contact 
point is elliptical, hyperbolic and parabolic, respec- 
tively. In cases ( la)  and (lb) the origin represents 
respectively a local minimum or a local maximum of 
F(x, y), while in case (2) it is a saddle point. From 
the theory of the extremai points of a function of 
many variables, the determinant [ -Y( (x ,  y)] of the 
matrix 

] (8) 

evaluated at the origin is positive in case (1), negative 
in case (2) and null in case (3). This property gives 
us the operational definition of a simple contact point: 
it is a point where the first-order partial derivatives 

' are null and the Hessian [i.e. YC(x, y)] of F is different 
from zero. 
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We can now discuss the limit of ~ ,  defined by (5), 
as r~6.  

( a ) Discontinuity due to elliptical contact-point sets 

Let us consider first the elliptical contact-point case 
corresponding to case ( la ) .  Since F has a local 
minimum, locally 2 lies above 9°(0, 3) and thus it 
will also lie above 50(0, r) when r < 6. In this case 
9°(0, r) will not intersect 2; and so F(0, r) does not 
exist. From (5) one concludes that 

~e(0, ~-)  = 0. 

By contrast, when r > 6, ,9°(0, r) will intersect ~Y along 
a closed curve which shrinks to a point as r--> 6+. In 
that limit, the integrand diverges and simultaneously 
the length of the integration domain tends to zero. 
In Appendix A we show that 

~(0 ,  6+ )=  lim ~(0 ,  r ) =  2zrYg-~/2(~.&0)(&z.&o) 

where ~o denotes the unit vector of the direction going 
from dSl to dS2. One concludes that ~ (0 ,  r) has a 
finite discontinuity at r = 6  in case ( la ) .  The dis- 
cussion of case ( lb)  is quite similar. We have only 
to exchange the inequalities involving r and 6 and 
thus the discontinuity of ~ (0 ,  r) will have the 
opposite sign. In conclusion, recalling that ~ ,  ~2 and 
t~o can be parallel or antiparallel, one has 

~ ( r l , 6 + ) - ~ ( r l , 6  -) 

= 27ro~-1/2(rl, 6) 

X {~,(r,) .  ~2[rl + 6~o(r,)]} sign (F)  (9) 

where we have removed the unnecessary condition 
that dS1 be located at the origin and we have explicitly 
indicated that the value of the Hessian depends on 
r~ and on 6, since the contact takes place at r~+ 
3~o(rl). The finite discontinuity (9) results from a pair 
of parallel and opposite infinitesimal surface elements 
of ~; at a relative distance 6 and characterized by an 
elliptical contact point between one of these elements 
and the sphere of radius 6 centred on the opposite 
element. Clearly, the infinitesimal contributions sum 
to a finite discontinuity of y'~(r) only when the condi- 
tion of opposite equidistant ellipticalparallelism is real- 
ized on a finite-area subset of the interphase surface. 
In particular, if we denote this subset by ~ ~, combin- 
ing (9) and (4a) we find the general integral 
expression of the finite discontinuity of the second- 
order derivative of the correlation function 

We note that the presence of edges on the particle 
boundaries implies that ~(rl)  does not exist on these 
curves. By assumption the set of the latter is not dense 
in ~ and then the integral exists. We can decompose 
2 ~  in the union of the largest subsets which in their 
inside have no subsets of the edges, which con- 
sequently will form part of the boundaries of the 
aforesaid subsets of ~ .  The decomposition of the 
latter corresponds to writing the former integral as a 
sum of integrals each evaluated on one of the 2 ~  
subsets. Inside each of these, t~l(r~) and &2It1+ 
6~o(rl)] are continuous vectors and their scalar prod- 
uct will be continuous too. Since ~ and ~2 are either 
parallel or antiparallel, if at a point of the subset they 
are parallel they will remain parallel throughout the 
subset. In the same way the value of sign (F)  cannot 
change, otherwise we pass from a maximum to a 
minimum and this requires that the Hessian becomes 
somewhere null. Thus the scalar product and sign (F)  
can be taken out of each of the integrals. For nota- 
tional simplicity we shall omit denoting the summa- 
tion over the subsets and thus we shall simply write 

~,~(~+)- ~,~(~-) = a T ( ~ )  (lOa) 

a~)(6)_= sign (F)(~1 • ~2) 
2V62~1~2 

x f dS, W-l/2[rl+3~,o(rl) ]. 
zg 

(lOb) 

But for some simplifications, this result coincides with 
equation (V.4) of I, where one can also find a dis- 
cussion of some examples.* 

( b ) Discontinuity due to hyperbolic contact-point sets 

Once one takes into account result (A.25), the 
discussion of this case is quite similar to the previous 
one. We shall denote by 2H the subset of 2; obeying 
the condition of opposite equidistant hyperbolic 
parallelism, i.e. ~,~ is made up of infinitesimal surface 
elements such that each has in 2 ~  a parallel and 
opposite element at a distance 6, and moreover the 
sphere with radius 6 and centred on it has a hyper- 
bolic contact with the opposite element. Then, by 
combining (A.25) and (4a) one finds that this set 
gives rise to a logarithmic divergence in y~(r) as r ~  6. 
More definitely, the general result is 

y g ( r ) = - a ~ ) l n l r - 6 1 + o  ( l l a )  

7'~(6+)-y'~(6-)=(2 V62@l~2)-' Jg dSa sign (F)  

x {~,(r ,) .  ~2[rl + 6~o(r,)]} 

x Yg-'/Z[r 1 + 6~o(rl)]. 

* In particular, when the interphase surface is a sphere the 
integral is proportional to the area S~ of ~ ,  which was denoted 
by SII in (1). In more general cases each of the contributions (10b), 
by the theorem of the mean, is equal to +S~(~c). From the 
footnote on p. 96, ( ~ )  is the mean Gauss radius of the difference 
surface. 
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where 

( (~1 .92)  

A ~' -- 2 rr--VS-2-~102 

f 
x ] d&l~l-'/2[r,+&~o(r,)]. 

, i J  ~7 
( l l b )  

Here o denotes a continuous contribution with an 
integrable derivative in the neighbourhood of 6 and 
the scalar product has been taken out from the integral 
since we are using the same convention discussed 
below (10). If we start from (10) and (11) and use 
the theorem of Erd61yi (1956) and the lemma of Jones 
& Kline (1958) it would be easy to show that these 
contributions give rise to oscillatory deviations pro- 
portional to cos ( ) and to sin ( ) ,  respectively. As we 
have said in the Introduction, we prefer to arrive at 
this conclusion after having discussed the case of a 
cylindrical particle. 

Cylinder correlation function 

According to the general SAXS theory (Porod, 1982), 
the isotropic component of the correlation function 
of a single particle with uniform electronic density is 
given by 

7o(r)=(47rV)- '  S[ .p , ( r l )p , ( r ,+r~)dv ld~  (12) 

where V is the volume of the particle and p~(r) is the 
latter's characteristic function.* We confine ourselves 
to the case of a right circular cylindrical particle. 
Equation (12) can easily be evaluated if one recalls 
that the integral in (12) represents the volume of the 
region shared by this cylinder and by an identical 
cylinder translated by ro3 (Guinier, 1963). With this 
aim we choose the origin of the coordinates r, at the 
centre of one of the cylinder's bases and the z~ axis 
along the axis of the cylinder. Denoting by a the 
angle between m3 and the plane z--0, from (12) one 
gets [see Miller & Schmidt (1962), Schmidt (1965) 
and more recently Gille (1987)] y(x)=I(2/~a) 

1,0, 

%(x) 

I 
am(x) 

cos ( a ) s ( a , x ) A ( a , x )  da, 

x<_(l+a2) I/2 

x >_ ( l + a2) 1/2. 

Here the following definitions have been used: 

D - 2 R ,  x -  r /D, a -  H / D ,  

A ( a , x )  =- a - x  sin a 

(13) 

(14) 

* See, for more details, Ciccariello et al. (1981) and paper I. In 
particular we note that all the results of  these two papers apply 
also to the case of  a single particle, provided one takes N -- 1, 
(r/2) = 1 and the sample's volume be identified with that of  the 
particle. 

s ( a , x ) =  arccos (x cos o ~ ) - x ( 1 - x  2 cos 2 a) '/2 cos a 

r0, 0_<x_<min (a, 1) 

max [0, arccos ( l /x ) ] ,  

a m ( x ) -  min (a, 1)<- x<-max (a, 1) (15) 

arccos ( 1 / x), 

max (a, 1)<- x<-(l  + a2) I/2 

rr/2, 0-< x-< m~n (a, 1) 

max [ zr/2, arcsin ( l /x) ] ,  

a M ( x ) -  min(a,  1)-<x-<max(a,  1) (16) 

arcsin (a / x), 

max (a, 1)-< x-< (1 + a2) ~/2. 

The second-order derivative of y(x)  can easily be 
obtained by differentiating (13). After some algebraic 
manipulations, one succeeds in expressing y"(x) in 
terms of some elliptical and elementary algebraic 
functions (Abramowitz & Stegun, 1970). In particular, 
one finds that 

' (4/3 zrx)[ S , K ( x ) -  S2E(x)] 

+ (1/2zrax3)Sf(x), 

0--< x<--min (a, 1) 

(4/3 zr)[ S3K(1/x)-  S2E(1/x)] 

+ (1/2~ax3)6f(1), 

1-<a and l<-x<-a 

(4/3zrx){-aR,R2 

+ S , [ K ( x ) -  F(~p, x)] 

y"(x) =, _S2[E(x)_E(~p ,x )]}+Cgl+~(x ,a) ,  

a<-I  and a<-x<-I 

(4/3 rr){-( a /x )R ,R2  

+ S3[K(1 /x ) -  F(~p, l /x ) ]  

-- S 2 [ E (  1 / x ) -  E(¢,  l /x)]} 

+ ~2+ ~(x, a), 

max (a, 1) <- x <- (1 + a2) 1/2 

O, ( l + a2)I/2 <_ x. 

We have put 

R l - ( x 2 - a 2 )  1/2, R 2 - ( l + a 2 - x 2 )  1/2 (18a) 

S l - 2 + x  2, $2 -2 (1+x2) ,  $ 3 ~ 1 + 2 x  2 (18b) 

~p - arcsin (R~) (18c) 

~(a ,  x ) -  (2a/zrxa)[arccos (R~)-2R,R2]  (18d) 

~(x)  - [2 sin (2x) -arcs in  x - 3  sin (4x)] (18e) 

(17) 
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~d, -= ( 1/20tax3) [,g°(x) - oq~(R1) ] 

~2 =- ( 1/ 2 7"rax3)[,-,q~(1 ) - ,.,~( R, ) ] 

(18f) 
(18g) 

while K(x) and E(x) are complete elliptic functions 
of the first and second kinds (Gradshteyn & Ryzhik, 
1970). Similarly, F(~,  y) and E(q~, y) denote the cor- 
responding incomplete elliptic functions and ~ and 
y are the so-called amplitude and modulus respec- 
tively. 

As we have already emphasized the deviations from 
the Porod law are determined by the discontinuities 
of y~(r). Therefore we.shall  now discuss the con- 
tinuity properties of y"(x) resulting from (17). Apart 
from K ( ) ,  the other functions appearing on the r.h.s. 
of (17) are continuous in the reported x range. Thus 
the discontinuities can appear at x = 1 where both 
K (x) and K (1/x)  are singular and at the points which 
separate next intervals provided the left and right 
limits of y"(x) are different. The only point where 
this phenomenon occurs is the point x = a, since here 
the contribution ~(x,  a) is present only on the right 
while the remaining quantities are equal. We recover 
the finite discontinuity already found by Miller & 
Schmidt (1962), whose value can be easily obtained 
from (17). One finds that y"(a+). - y"(a-) = ~(a,  a) = 
a -2. Recalling that 7'~(r)= D-27(x),  one concludes 
that 

"Y~(H+)-y~(H-)  = 1 /H 2. (19) 

At x = 1, the singularity of y"(x) is a logarithmic one 
(Schmidt, 1965). It can be immediately isolated by 
using the series representation (8.113.3) of Grad- 
shteyn & Ryzhik for K(x )  and K(1/x ) .  One finds 
that, as x-~ 1-, 

K(x) "- In [4(1 - x2) -1/2] + o 

= -½ In (1 - x) + In [4(1 + x) - '/2] + o (20a) 

while, as x--> 1 +, 

K(1/x) ~--In [4x(x 2 -  1)-1/2] + o 

= - ½ 1 n ( x - 1 ) + l n [ 4 x ( l + x ) - ' / 2 ] + o .  (20b) 

Thus, from (17) one finds that the leading term of 
y'~(r) as r--> D is 

Y ' ~ ( r ) = - ( 2 / T r D 2 ) l n ( l l - r / D I ) + o  (21) 

where o denotes the remaining contribution which is 
continuous and has a derivative with integrable 
singularities as r--> D. 

It is instructive to see how results (19) and (21) 
can be easily obtained by applying the results reported 
in the previous section. First of all we note that when 
the sample is made up of a single particle the second- 
order derivative of the correlation function is given 

by (Ciccariello et al., 1981) 

y'd(r)=-(1/nTrVr2) ~dS~ ~ dl([~.o3(1)]  
F ( r b r )  

× cot {arc cos [ ~1(I).o3(I)]}) (22) 

where the meaning of the symbols is the same as in 
(4a). (One should note that formally here one has 
~ ~2 = 1. This is a consequence of the fact that we 
have a single particle.) Consequently, the results (10) 
and (11) will apply also to this case. Accordingly we 
have first to see whether subsets S~ and S~ n exist and 
then to use (10) and (11). 

We note now that the condition of equidistant and 
oppositely parallel subsets can be formulated in terms 
of the Huygens'  principle. In fact, imagine that a 
subset of the sample's interface be the initial configur- 
ation of a wave front. In order to determine the wave 
front at a later time we have to consider the family 
of spheres with centre on each point of the subset 
and with radius equal to the distance travelled by the 
wave in the time interval considered. The envelope 
of the spheres gives the new wave front. If this partly 
superimposes on the initial subset, it appears evident* 
that the superimposed subset is clearly made up of 
infinitesimal elements which are equidistant and 
oppositely parallel. 

Let us apply this construction by assuming that the 
lower basis of the cylinder be the initial wave front. 
After the wave has travelled a distance equal to the 
cylinder's height H, the new wave front superimposes 
clearly on the top basis and vice versa. Similarly, 
taking as initial wave front the lateral surface of the 
cylinder, one sees that after the wave has travelled a 
distance equal to D, the cylinder's diameter, the new 
wave front again superimposes on the lateral surface. 
Thus we have two distance values H and D, where 
the condition of equidistance and opposite parallelism 
is met. 

In the first case, since each touching sphere lies 
below the top basis the contact is clearly elliptical. 
In order to apply (10), we need to know the Hessian. 
To this aim we choose the z axis parallel to the 
cylinder's axis and the origin at the point opposite 
to the contact point. The local parametric equations 
of the upper basis and of the touching sphere are 

z = f x ( x , y ) = H  

z = f~(x, y) = ( H 2 - x 2 - y2),/2. 

Using (7) and (8) one finds that g ( 0 ) =  H -2. This 
quantity is the same for any point of the basis. Sub- 
stituting in (10) and noting that sign (F)  > 0 and that 
A A 
o-~. 02 = 1 one has 

y ' ~ ( H + ) - y ' ~ ( H - ) = A ~ ) ( H ) = S b / V H  (23) 

which is clearly equal to (19). 

* One can rigorously prove this property (Ciccariello, 1989). 
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We evaluate now the contribution to the lateral 
surface ( - S t ) .  From Fig. 1 it appears clear that the 
contact points are hyperbolic. In fact, when r < D, 
/-'(r~, r) is equal to the curve/ '1 shown in Fig. 1. But 
as r-* D- ,  the top points Q and Q', approach each 
other and they meet at Pt, the point opposite the 
sphere centre P, when r = D. At this point, the curve 
F(r~, r), which was made up of one curve only, is 
now formed by two closed curves touching each other 
at P,. As r becomes larger than /9, the intersection 
curve indeed separates into the two curves F2 of Fig. 
1. Clearly, the spherical surface lies inside the cylinder 
in the regions on the left and on the right of 1-'2 or in 
the region above/ '~ ,  while it lies outside the cylinder 
in the region in between the F2's or below Ft.  It is 
evident then that P, is hyperbolic. We can use (19) 
in order to obtain the leading asymptotic term of 
3'~(r) as r-* D. In order to evaluate the Hessian we 
choose the z axis along a cylinder's diameter and the 
origin at the lower end of the latter, while its upper 
end is the contact point. The y axis is parallel to the 
cylinder's axis. The local parametric equations are 

z = f:~(x, y ) =  D/ z + ( D2/4-  x2) '/2 

z =f~e(x, y) = (D 2-  x 2- y2),/2 

and the Hessian is ~ ( 0 ) =  1/D 2. This quantity does 
not change if we rotate the cylinder ,or if we move 
along the y axis. The calculation of the integral (11 b) 
is immediate and one finds that 

S L  

3"~(r)= 2rrVD ln ( l l - r / D I ) + °  

= - A ~ ) ( D ) l n ( ] l - r / D I ) + o ,  (24) 

which coincides with (21). 

Asymptotic behaviour of the intensity 

We have now to work out the asymptotic behaviour 
of the isotropic component of the intensity scattered 
by the homogeneous cylinder considered above. In 
the case of a single particle one simply has 

I(h)=(1/4rr) I[~(hd~)[ 2 d~3 (25) 

where fi(h) is the Fourier transform (FT) of p(r). By 
direct evaluation (e.g. Guinier, 1963), one finds that 

I ( h ) = 4 V  2 

~-/2 I ]2 0[sin (qa cos 0) Ja(qsin 0) dO 
sin k qac~sO qsln0 

o 
(26) 

with q -  hR. On the other hand, l(h) is also the FT 
of the sample correlation function. In this way from 

(12) and (25) one obtains 

c o  

I(h)=(47rV/h) ~ r3"o(r) sin (hr)dr 
0 

oo 

=(47rVD3/Q) ~ x3"(x) s in(Qx)dx (27) 
o 

where we have put Q -  hD = 2q. 
The leading term in the asymptotic expansion of 

I(h) will be evaluated starting from the latter 
expression. Two integrations by parts yield 

L M 

l (h) /47rVD3=-Q -3 ~ sin (Ox)[d2x3"(x)/dx 2] dx 
0 

(28) 

where we have used the property that 3 ' (x)= 0 when 
x >  LM---- (1 +a2)  ~/2 [see (13)]. In o rde r togo  one step 
further we have to take account both of the first-order 
discontinuity and of the logarithmic singularity of 
3'"(x), located at x = a and at x = 1, respectively. For 
definiteness, let us assume that a > 1. Then we split 
the integration domain of (28) in two parts: [0, ao] 
and [ao, LM], where ao is such that l < a o < a .  
Similarly to I, the domain [ao, LM] is split into 
[ao, a - ]  and [a +, LM]. Inside each of the latter the 
integrand of (28) is continuously differentiable. Thus 
one can integrate by parts and one finds 

k M 

f d2xy(x______~ ) 
- O  -3 s in(Ox)  dx 2 dx 

n o 

__= Q-4 cos (Qx) d x  2 ao 

d2x3"(x___.___~) ] £M ] 
+ c o s ( Q x )  dx 2 a* 

[i _ Q-4 cos (Qx) dx 3 dx 

t l  0 

f d3xT(x) dx 
+ cos (Qx) dx 3 

+ 
o 

= Q-4[ - cos  ( Qa)aA ~)(a) 

d2aoy(ao)] 
- c o s  (Qao) dag + o (29) 

where the property 3"(LM) = 3'"(LM) = O, following 
from (13) and (17), has been accounted for. 

In order to handle the logarithmic singularity of 
y"(x) at x = 1, we split the domain [0, ao] in three 
parts: [0, 1 - e], [1 - e, 1 + e] and [1 + e, ao], with e a 
sufficiently small real positive number. In the first 
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and in the third domain, the integrand is continuously 
differentiable and thus one can integrate by parts as 
before. One gets 

I - -E  

f d2xy(x ) 
_ Q - 3  sin (Qx) dx------------ Y- dx 

0 

[ I ]+o ___ Q - 4  _ 2 T , ( 0 ) + c o  S ( Q x )  dx 2 I-~ 

a 0 

f d2xy(x) dx 
_ Q-3 sin (Qx) dx 2 

l + e  

d2aoy(ao) 
... Q - 4 [ c o s  ( Qao) d a~ 

_cos(Qx) dExy(x--------~) l ] 
d x  2 "if- o. (31 ) 

l + e  

The remaining integral contains the logarithmic 
singularity of y"(x), given by (21). Adding and sub- 
tracting this contribution and defining 

yg(X)=-d2xy(x)ldx2+(2/Tr) In (11- xl), (32). 

we find that the aforesaid integral splits into the sum 

l + e  

_ Q - 3  ~ sin ( Q X ) T R ( X )  dx 
1--e  

1 + ¢  

+ ( 2 / T r Q  3) ~ sin(Qx) ln(ll-xl)dx. (33 )  
l - - e  

The regularized function ")/R(X) is such that, by 
differentiating it once more, the resulting derivative 
will have integrable singularities at x = 1, as one can 
see from (17) and the general properties of the elliptic 
functions involved. By the theorem reported by 
Erd61yi (1956), one can integrate by parts the first 

/ . , /  .. \ 

/ / / "  ':. \ \  , 

P 

Fig. 1. The curve F t represents the intersection of the sphere, with 
radius r < D and centred at P, with the cylinder's lateral surface. 
As we let the sphere radius increase, the top points Q and Q' 
move towards Pt. They meet at Pt when the sphere radius 
becomes equal to the cylinder diameter. In this case Pt becomes 
a double point of the curve. As the sphere radius becomes still 
larger, the curve F splits into the two curves F 2. 

integral of (34) and one obtains 

l + e  

_ Q - 3  ~ sin(QX)yR(X)dx 
1- -e  

Q - 4  c o s  ( Q x )  TR ,+e ~- (x)I ,_ ,+  o. (34) 

In Appendix B we show that the leading asymptotic 
term of the second integral of (34) is 

~Q4 - s i n Q  l n e c o s ( Q x )  1-~+°" (35) 

, i ,  | , , i , i , i , i  | 

• . 

. . . . . . . . . . . . . . .  , , , ,  

• ~ .  ~ .  ~ .  ~ .  1 ~ .  

h 

(a) 

] . . . . . .  o . . . . . . . .  . o ,  

I 
i.t . . . . . . . . . . . . . . . .  
' 0 .0  20. ~0. dO. 80. 100. 

h 

(b) 

Fig. 2. (a) Porod plot of the intensity scattered by a cylinder 
characterized by the ratio H I D  = 0-4. The units of h are D - ' .  
The continuous line refers to the theoretical intensity lib(h) 
obtained from (26), while the dotted line refers to the leading 
asymptotic approximation las(h) given by (38). (b) The curve 
plots the quantity h 4 [ l th (h) - /as (h) ] .  The slow decrease of the 
curve suggests that the next terms in the asymptotic expansion 
are characterized by a behaviour h-'~, with a slightly larger than 
four, as appears evident from Fig. 5. 
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Summing contributions (34) and (35) and using (32) 
one finds 

2 sin (Q) d2xy(x) l"' 
_ _  Q-4 ~ ] + o. (36) Q4 Q4 + cos (Qx) dx 2 l - e  

Collecting the results relevant to (29), (30) and (36), 
one obtains that the leading asymptotic term of the 
intensity scattered by a cylinder is given by* 

I ( h ) ~- (4~rVD3/ Q4){-2  y'(0) 

- a A ~ ) ( a ) c o s ( Q a ) - 2 s i n  Q}+o.  (37) 

Recalling that y ' ( 0 ) = - S T / 4 V  (Debye et al., 1957), 

*One should note that any dependence on the physically 
inessential parameter e has disappeared. The changes required for 
the proof of (38), when a < l, are obvious. 

and also that A~)(a) is given by (19), we see that the 
former result can be written in terms of the cylinder 
surface components as 

4~rV[2S2+SL 2SB 
l(h)"---~- - V  2--V -c°s (hH) 

S/_ 
sin (hD)]  + o. (38) 

2V 

Figs. 2-4 allow us to see how result (38) works. There 
we plot the intensities, as well as the difference 
between the intensity given by (26) and its asymptotic 
expansion (38), for three different H / D  ratios. In 
Fig. 5 the relative importance of the next higher order 
terms O(h -45) and O(h-5), obtained by Schmidt 
(1965), is shown. 

o 2o ~o h )  6o 8o ~oo ( a ) 1oo. 

I I  . . . . . . . . . . . . . . . . .  Hjo 

i "° 1 -  

i i I , i i I I i i i i [ i i , 

"0 .0  20.  ~0  . dO. ~ . 100. 

h 

(b 

Fig. 3. As in Fig. 2, with H~ D = 1. 

'0.0 

' t , i , ! , t , | , ! , ! , | , i , 

H/D =1.2 

i l , l i i i l i i i i l l l i i i , 

20. 40. do. 80. 

h 

(b) 

Fig. 4. As in Fig. 2, with HID = 1.2. 

100. 
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Concluding remarks 

The proof of (38) nowhere depends on the fact that 
we have a single cylindrical particle. It depends 
indeed only on the fact that 7"(x) has a finite discon- 
tinuity (at x = a) and a discontinuity (at x = 1) corre- 
sponding to a logarithmic divergence of the kind 
In (11 -x ] ) .  The proof that the first discontinuity gen- 
erates oscillatory deviations proportional to the 
cosine function depends on the fact that once the 
integration domain is split at the discontinuity point 
a, in the resulting two neighbouring integrals the 
integrand is differentiable [see (29)]. By contrast the 
proof that the logarithmic singularity gives a contribu- 
tion proportional to the sine function is more invol- 
ved. It requires in fact that in the neighbourhood of 
the singular point we are able to tame the divergence 
by constructing a regular function, as we have done 
in (32). The proof given above shows that when the 
singularity has the behaviour ---=A~ ) In ( l l - x l ) +  o 
and o is a continuous contribution with an integrable 
derivative, the asymptotic behaviour of the singular 
logarithmic term yields a contribution proportional 
to the sine function and a further contribution which, 
added to the one resulting from the regularized func- 
tion, reproduces the initial function [see (36)]. In this 
way the contributions due respectively to the upper 
and lower extrema of the next integrals cancel and 
only the contribution proportional to the sine func- 
tion survives. In the second section we have shown 

I II • 

Hif, I !I :, 
I I II 

,---- I I I I  6 

6 
' 0 .0  20. ~0. 60. 813. 100. 

h 

Fig. 5. The broken and the continuous curves show h 4 [ l t h ( h )  - 

/as(h)] when /as(h) accounts for the contribution O(h -4"5) and 
O(h-5), which are the next higher order ones. They have been 
obtained by Schmidt (1965) and with our normalization they read 

(87r/h4"5)[c0s ( Hh + 7r/4)/ Hl/2 + (2/ H) I/2 sin (h + rr/4)/ H] 

and (-12Tr/h 5) cos (h), respectively. The comparison with Fig. 
4(b) shows a good improvement. However, from a practical 
point of view, Figs. 2-4(a) show that an asymptotic analysis 
with only Porod deviations can be satisfactory starting beyond 
the first complete oscillation. 

that y~(r) behaviour around a hyperbolic singularity 
obeys the conditions just recalled. Thus the proof  
yielding result (37) can be applied to each of the 
singularities of y'~(r). In order to find the general 
contribution we express the deviations from the Porod 
law present in (37) in terms of the coefficients defined 
by (23) and (24). One finds respectively 

- ( 4 7 r V / h 4 ) H A ~ ) ( H ) c o s ( h H )  (39) 

- ( 4 " n ' V / h 4 ) D T r A ~ ) ( D ) s i n ( h D ) .  (40) 

We conclude the paper by summarizing the results. 
The most general deviation from the Porod law is 

A~ cos (h6~)/h 4 + ~_~ n j  sin (h6j)/h 4. 
i j 

Each of these contributions arises from the existence 
of a subset of the interphase surface which is opposite, 
parallel to and distant 6i from itself. Moreover the 
cos ( )  and sin ( )  terms arise from those subsets 
characterized respectively by elliptical or by hyper- 
bolic contact points. Finally, coefficients Ai's and Bfs 
are related to the coefficients defined by (10) and (11) 
and to the mean Gauss radius, defined in the footnote 
on p. 89, through 

A i = - 4 7 r V 6 i A ~ ) ( 6 i )  

- 4 V ['sign (F)(~I'(~'2) (g~G)] (41a) - -  " [ 

Bi = - 4 r r V S : r  A~)(6i) 

- 7r [.2--VqD]~2 S ~  i (41b)  

The index i reminds us that the quantities inside 
brackets are evaluated at 6i. The close similarity of 
the coefficients in the two cases now appears evident. 
Clearly the usefulness of this analysis lies in the fact 
that by inspecting the geometrical properties of the 
interphase one can directly obtain the leading 
asymptotic term of the intensity.* We hope that the 
knowledge of these results may be of some help in 
the interpretation of the wiggles sometimes present 
in experimental intensities, as has already happened 
(Ciccariello & Benedetti, 1986). 

It is a pleasant duty to thank one of the referees 
for having brought to my attention the papers by 
Schmidt (1965) and by Miller & Schmidt (1962) and 
for having stressed the importance of the paper by 
Jones & Kline (1958). I am also very grateful to 
Professor Paul W. Schmidt for enlightening corre- 
spondence. Financial support from the Italian 

* For instance, if the sample is made up of toroidal particles, 
then one expects that only a deviation proportional to the sine 
function is present. Indeed, let D denote the diameter of a small 
section of the torus, so the toroidal surface is oppositely parallel 
and distant D from itself and the contact points are hyperbolic 
(Ciccariello, 1989). 
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A P P E N D I X  A 

We have to study the limiting behaviour of LP(r,, R) 
as R ~ 6 .  To this aim we follow very closely the 
procedure illustrated in Appendix A of I. Comparing 
(3) and (4a), we see that ~ ( r , ,  R), defined by (5), 
can be written as 

~ ( r , ,  R ) =  I R2 d~) I dS2(d, .~)(d '2 .~)  

x 6(r ,  + R03 - r2). (A.1)  

We choose the z axis along the direction going from 
dS~ to dS2 and the origin at dS~. Equation (A.1) 
becomes 

LP(0, R ) =  I d9o I dS2[6,.O-o(R)] 

x [62(r2). O-o(R)] 6 ( R -  r2) (A.1 a) 

where R denotes a point on the spherical surface 
9O(0, R) and cro(R) is the unit vector normal to 9 o at 
R and pointing externally to 9°. Moreover, since we 
are interested in extracting the singular contribution 
to ~(0,  R) due to the point P2, we can confine our- 
selves to analysing the contribution to the integral 
due to ~;', a small subset of ~; centred at P2. Locally, 
the parametric equations of 9O and-~; are 

Z = Z ( X ,  Y ) = ( R 2 - X  2 -  y 2 ) ! / 2  ( A . 2 a )  

z = f z ( x , y ) .  (A.2b) 

By the well known Gauss formulae (e.g. Smirnov, 
1964, § 130) 

dgo(R) =/zse(X, Y) d X  d Y  (A.3a) 

dS2(r) = tzz (x, y) dx dy (A.3b) 

with 

region around the origin, expanding there both f:~- 
and Z(x,  y) one finds 

fz=6+(f:z., , , ,x2+2fz,~,yXy+ fy ~.:.y2)/2+o (A.6a) 

Z~- R - ( x 2  + y2)/2R'+ o (A.6b) 

where 0 denotes 
respect to x 2 + y2. 
in the (x, y) plane, 

f~ 
Z,,_ 

a contribution infinitesimal with 
By a suitable rotation of the axes 
we can write (A.6a) and (A.6b) as* 

~- 8 + a~2 + brl2 + o (A.7a) 

R - ( ~ 2 + ~ ) 2 ) / 2 R + o  (A.7b) 

where ~: and r/are the rotated coordinates and a and 
b can easily be related to the coefficients present in 
(A.6a). We introduce the function 

F R ( x , y ) ~ f z ( x , y ) - Z ( x , y )  (A.8) 

which becomes equal to the one defined by (7) when 
R = 8. Moreover, the Hessian of FR at the origin is 
equal to 

WR(O) = (f'z, xx + 1/R )(fz, y:, + 1 /R) - f~ , x : .  

= (2a + 1/R)(2b + 1/R). (A.9) 

The last equality follows from the fact that the rotation 
corresponds to a transformation which diagonalizes 
the Hessian matrix and consequently leaves invariant 
its determinant.l In terms of variables ~: and r/, the 
8 function in (A.4a) requires that 

( a + l / 2 R ) ~ 2 + ( b + l / 2 R ) ~ 7 2 = R  - & (A.10) 

( a ) Elliptical point case 

When P2 is an elliptical point, ~ ( 0 ) >  0. For the 
continuity of ~R(0) with respect to R [see (A.9)], 
one has also ~R(0)>0 ,  provided R is sufficiently 
close to & In this situation we have two possibilities: 

A - a + I / 2 R > O  and B - b + I / 2 R > O  (A.11a) 

tzse(X, Y ) = ( I + Z , 2 x + Z ~ v )  ~/2 (A.3c) 

i z r . ( x , y ) = ( l + f ~ , x + f ~ , y )  '/2 (A.3d) 

(f:~, x denotes the partial derivative off,: with respect 
to x, etc.). The presence of the 8 function makes the 
integration of (A.la) with respect to X and Y 
immediate: 

2T(0, R) = J d x d y 6 [ Z ( x , y ) - f , ~ ( x , y ) ] l r ( x , y )  

(A.4) 

where It(x, y), defined as 

lr(x, y ) =  tx~(x, y)txz(x, y)[~, .  ~0(x, y, Z)]  

x[d'2(x,y,f~z).d'o(x,y,Z)] (A.5) 

is a continuous differentiable function, due to the 
previous smoothness assumption. Since ~ '  is a small 

* We are sure that (A.7a) can be obtained from (A.6a) by a 
suitable rotation, since (A.7a) represents the surface fz around t'2 
with respect to the directions of  its principal curvatures, which are 
also orthogonal (Smirnov, 1964, § 136). One should also note that 
the rotation does not depend on R. 

t It is very interesting to note that ~R(0) has an important 
geometrical meaning. In fact (A.8) is the parametric equation of 
a surface which could be called the difference surface between 
and 5e(0, R). Using (A.7a) and (A.7b) one immediately sees that 
its principal curvature radii are R~=(2a+I/R) -~ and R2= 
(2b+l/R) -I. Recalling that the so-called Gauss curvature ~ c  
(Smirnov, 1964, § 134) is given by 5~ c = 1/(R~R2), one concludes 
that ~ = 5f c .  This result is important, because the Gaussian cur- 
vature is an intrinsic property of  a surface [see, for instance, Hilbert 
& Cohn-Vossen (1953)] and thus its value cannot depend on the 
coordinate system. From the previous definition, I~cl -m ( = ~ )  
represents the geometrical mean of the principal curvature radii. 
For this reason we shall call this quantity the Gauss radius of  the 
difference surface. 
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o r  

A < 0  and B < 0 .  (A.11b) 

In the second case (A.10) cannot be satisfied when 
R > ~ and thus 

L#(0, ~+)=  lim ~(0 ,  r ) = 0 .  (A.12) 
r --.j, ~ + 

By contrast, when R < 6 we can rescale ~ and r/ as 
follows: 

~ = Ial- ' /2~, ,  n = IBl-l/2n,. (a.13) 

With this substitution (A.10) becomes 

~z~ + 712= 6 -  R + o 

while 

dx dy = IABI-,/2 d~  drl~ = Yg-RU:(O) dt dqb 

where we are using the polar coordinates and so 
t=~:~+r/~. The argument of the Dirac function 
becomes t - (6 - R) and since 6 - R > 0, the integra- 
tion with respect to t yields 

2zr 

~(0,  R )=  ~ ddfl~(x, Y)I,=8-R. 
o 

The quantity inside the integrand is continuous and 
has to be evaluated at points which become closer 
and closer to P2 as t ~ 0. Its evaluation at/:'2 is trivial 
since, owing to the fact that the first-order partial 
derivatives are null there, from (A.3c) and (A.3d) it 
follows that /z~ = /zs  = 1, and at P2 one also has that 
O'o points toward the positive z axis while o-~ and OrE 
are parallel or antiparallel to the latter. In conclusion 
the result is 

ZP(0, 6 - ) -  lim ~(0 ,  R ) =  27rfft'-l/2(~l.~O)(&2.~o) _ 
R - , 6  

- ~ .  

The discussion for the case (A.11a) is quite similar. 
One finds that 

~ (0 ,  6+)=Lf  and LP(0, 6 - ) = 0 .  

Combining the two results one obtains 

~(0 ,  6 + ) -  ~e(0, ~ - ) 

= 27rYg-u2(0) (~1. &2) sign (A) (A.14) 

where instead of s ign(A) one could also use 
sign [F~(x, y)],  with the understanding that Fa(x, y) 
must be evaluated quite close to the origin. 

( b ) Hyperbolic contact point 

The condition Yg~(0) < 0  implies that YgR(0)<0 in 
a sufficiently close neighbourhood of P2, which 
requires that R is close to 6. From (A.9) we have to 
distinguish two cases: 

A > 0  and B < 0  (A.15a) 

o r  

A < 0  and B > 0 .  (A.15b) 

Let us discuss the first case. After rescaling variables 
as before, (A.10) becomes 

~ - ' q ~  = 6 -  R. 

This equation represents a hyperbola having as 
asymptotes the lines bisecting the odd and even quad- 
rants. The important difference from the elliptical 
case is that the curve now never shrinks to a point as 
R ~ 6 and then ~ will diverge. In order to extract 
the asymptotic behaviour of ~ as R ~ 6 we recall 
that the integral (A.4) is evaluated on 2 ' ,  a small 
region containing the origin. We choose 2 '  as the 
region delimited by 

I~l<lolA~l -'/~ and Inl<lolB~l -'/~ (A.16) 

where A~ and B8 are obtained from (A.11) by taking 
R = 6 and lo is a small positive number. The integral 
(A.4) becomes 

~o ~o 
~(0 ,  R) = Iw1-1/2 j dEl S dn, 

x 6(~'2- r/lZ- 3 + R)f ,(~i ,  ~ll) (A.17a) 

where 

~o =- IoIA/A~I 1/2 and 4o ~ lolB/Bal 1/:, 
(A.17b) 

and l-r is obtained from (A.5) by expressing x and y 
in terms of the rotodilated SOl and r/l. We consider 
first the case R ~ 6-  and we put e = 6 -  R. Clearly 
e > 0. By a well known identity on 6 function one has 

- - T / I - -  

( ~ [ ~ 1 -  (1( e, "/71)]71- (~[~l .3f- ( I ( C  ' n l ) ]  
- 2sYl(e, r/,) (A.18a) 

with 

One finds 

g,(e, n,) = (~ + n~,) '/=. (A.18b) 

~o 

~(o,  R) = 21WR(0)I - ' / :  dn, (e + n2),/2 (A.19) 

o 

where 

l~(~:l, n , ) - [  Tr(~,, n , )+  Tr(-~,, 7,) 

-]- Tr(~l , - -  T]I)-~- fr(-sc,,- n,)]/2 ( A . 2 0 )  

is the completely symmetric part of fr(SCl, r/l). By a 
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partial integration, the integral in (A.19) becomes 

/s[SYl( e, ~o), ~o]ln[~o+(e+~oZ) 1/2] 

-1s[~,(e, 0), 0] In (e)/2 

"0 o 

- I dT/l In [ r / , + ( e +  r/~) 1/2] 
0 

x I'~.,7,[~,(e , r/,), r/,] (A.21) 

where 1's.,7,denotes the total derivative with respect 
to r/1 of l~[~i(e, r/i), r/l]. As R + 6-, e + 0 + and ~o ~ 1o 
and owing to their regularity the limits of the first 
and third terms in (A.21) can easily be evaluated. The 
second term is logarithmically divergent and its 
leading behaviour is obtained by expanding 
1~[~l(e, 0),0] with respect to e. Since 1~(0,0)= 
2 It(0, 0) = 2(&l. t}0)(t~2, t~o) = 2(~1. ~2), one finds that 

5o(0, R) = 21~R(0)I -I/2 

x { - (~ , .  ~2)In (e)+ Co+ O[e In (e)]} 

(A.22) 

with 
l o 

Co- I~(Io, 1o) In (21o)- [ dnl In (2nl)l'~.,,(nl, nl). 
0 

(A.23) 

Equation (A.22) yields the two leading asymptotic 
terms of 5O(0, R) as R-+ 6- in the case A a > 0  and 
B~ <0.  Let us see the changes required in the case 
R --, 6 +. In order to have again e > 0, we have to define 
the latter as e -  R -  6. Consequently the 6 function 
present in (A.17) will be written and decomposed as 
follows: 

6(n,  - ,~,(~, ¢:,)) + 6[n ,  + ,~,(e, sq)] - (A.24a) 
2#l(e, ~:l) 

with 

~l (e ,  ~:l) --= (e  + ~:~) 1/2 (A .24b)  

After integrating with respect to r/i one has 

go 
I ls({l, fl,) 

Le(0, R) = 2I~R(0)[ - ' /2 d~l (e + ~:~),/2. 

0 

The asymptotic estimate of this quantity is obtained 
along the same lines expounded above. Using the 
symmetry property of I,(~l, rll) one finds that the 
final result is again (A.22) with the only modification 
that now e = R -  & Thus the two cases can be rep- 
resented by the result. 

5O(O, R ) = 2It~R(O)1-1/2 

x[-(6"l.~'2)ln(IR-al)+Co+O]. (A.25) 

Since in this expression no explicit reference to the 
condition A > 0 and B < 0 appears, it is obvious that 
(A.25) holds true also in the case A < 0  and B > 0  
and thus (A.25) yields the leading asymptotic term 
of 5°(0, R) near a logarithmic singularity. 

APPENDIX B 

We now evaiuate the leading asymptotic term of 

I+e 
5~--(2/IrQ 3) j" sin(Qx) l n ( l l - x l )dx .  (B.1) 

1 e 

with the change of variable x = 1 - ey and from the 
parity property of the resulting integrand, (B.1) 
becomes 

~, --- (~-Q3/2)~ 

1 
= e sin Q j In (ey) cos (eQy) dy. (B.2) 

0 

With ( ~ -  Qe, a simple integration yields 

5~1 = [sin Q sin ((~)/Q] In e 

+ e sin Q,q~[SO((~)] (B.3) 

where ;R denotes the operation of taking the real part 
and we have used the definition 

1 
5O((~) = j" In y exp (it~y) dy. 

o 

Recalling that the asymptotic expansion of the latter 
is (Binder & Orszag, 1978) 

5°((~)--" - / I n  (t~)/(~ - ( i T  + rr/2)/(~ 

+ iexp( i t~ )  ~ ( - i ) " ( m - 1 ) ! / Q  ''+' (B.4) 
m=l 

one immediately obtains the sought leading 
asymptotic term of 5~, using (B.3) and (B.4), i.e. 

5 ~ = (2/rrQ4)[2 In e sin Q sin (Q8) - 7r sin Q ] +  o. 

(B.5) 

This can be immediately converted to the form (35). 

References 

ABRAMOWITZ, M. & STEGUN, I. A. (1970). Handbook of Mathe- 
matical Functions, pp. 589-591. New York: Dover. 

BALE, H. D. & SCHM1DT, P. W. (1984). Phys. Rev. Lett. 53, 586-599. 
BENEDETTI, A., CICCARIELLO, S. & FAGHERAZZI, G. (1988). 

Phys. Chem. Glasses, 29, 173-178. 
BINDER, C. M. & ORSZAG, S. A. (1978). Advanced Mathematical 

Methods for Scientists and Engineers, pp. 381-382. New York: 
McGraw-Hill. 

CICCARIELLO, S. (1985). Acta Cryst. A41,560-568. 
C1CCARIELLO, S. (1989). In preparation. 
CICCARIELLO, S. & BENEDETTI, A. (1986). J. Appl. Cryst. 19, 

195-197. 
CICCARIELLO, S., C o c c o ,  G., BENEDETTI, A. & ENZO, S. (1981). 

Phys. Rev. B, 23, 6474-6485. 



S. C I C C A R I E L L O  99 

CICCARIELLO, S., GOODISMAN, J. & BRUMBERGER, H. (1988). 
J. Appl. Cryst. 21, 117-128. 

DEBYE, P., ANDERSON, H. R. & BRUMBERGER, H. (1957). J. 
Appl. Phys. 28, 679-683. 

ERDI~LYI, A. (1956). Asymptotic Expansions, ch. II. New York: 
Dover. 

G1LLE, W. (1987). Exp. Tech. Phys. 35, 93-98. 
GRADSHTEYN, I. S. & RYZHIK, I. M. (1970). Tables oflntegrals, 

Series and Products, ch. 8.1. London: Academic Press. 
GUIN1ER, A. (1963). X-ray Diffraction, chs. 2 and 10. San Fran- 

cisco: Freeman. 
HILBERT, D. & COHN-VOSSEN, S. (1953). Geometry and the 

Imagination. New York: Chelsea. 
JONES, D. S. & KLINE, M. (1958). J. Math. Phys. (Cambridge, 

Mass.), 37, 1-28. 

MILLER, A. & SCHMIDT, P. W. (1962). J. Math. Phys. (NY), 3, 
92-96. 

POROD, G. (1952). Kolloid Z. 125, 51-60. 
POROD, G. (1982). Small-Angle X-ray Scattering, edited by O. 

GLATTER & O. KRATKY, ch. I. London: Academic Press. 
ROJANSKI, D., HUPPERT, D., BALE, H. D., DACAI, X., SCHMIDT, 

P. W., FARIN, D., SERf-LEVY, A. & AVNIR, D. (1986). Phys. 
Rev. Lett. 23, 2505-2508. 

SCHM1DT, P. W. (1965). J. Math. Phys. (NY), 6, 424-431. 
SCHMIDT, P. W. (1967). J. Math. Phys. (NY), 8, 475-477. 
SMIRNOV, V. I. (1964). A Course of Higher Mathematics, Vol. If, 

ch. 7. Oxford: Pergamon. 
WILLIAMS, J. A., RINDONE, G. E. & MCK1NSTRY, H. A. (1981). 

J. Am. Ceram. Soc. 64, 702-709. 
Wu, H. & SCHMIDT, P. W. (1974). J. Appl. Cryst. 7, 131-146. 

Acta Cryst. (1989). A45, 99-104 

A Reconsideration of the Role  of  Two-Phase  Seminvariants.  V. Basic Results  

Bv M. C. BURLA 

Dipartimento di Scienze della Terra, Universitfi, 06100 Perugia, Italy 

C. GIACOVAZZO 

Dipartimento Geomineralogico, Universit&, Campus Universitario, 70124 Bari, Italy 

AND G. POLIDORI 

Dipartimento di Scienze della Terra, Universith, 06100 Perugia, Italy 

(Received 30 November 1987; accepted 22 July 1988) 

Abstract 

A basic obstacle to the widespread  use of  two-phase  
seminvariants  of  first rank in direct methods is often 
the large amoun t  of  comput ing  time needed for their 
probabilistic estimation. A new very fast algori thm 
for identifying such seminvariants  and a modified 
probabilistic formula  for their estimation are de- 
scribed. Cont ra ry  to common belief, practical tests 
show that the amount  of  information contained in 
two-phase seminvariants  is in general not negligible 
compared  with informat ion provided by triplets. 

Symbols 

N:  number  of  atoms in the cell. 
m: number  of  symmetry  operators  of  the space group. 
Cs = (Rs, Ts): sth symmetry  operator:  Rs is its rota- 
tional and Ts its t ranslat ional  part. 
Eh : normal ized structure factor with vectorial index h. 
R~ = levi. 
~Oh: phase of  Eh. 
I: identity 3 × 3 matrix. 

I. Introduction 

A first a t tempt  at evaluating two-phase seminvariants  
was described by Grant ,  Howells & Rogers (1957). 
The method (the so-called 'coincidence method ' )  was 
extended to non-centrosymmetr ic  space groups by 
Debae rdemaeke r  & Woolfson (1972), according to 
the following argument .  Let 

Ul = hi - h2Rt~, ( l a )  

u2 = h2-hjR,~.  ( l b )  

If  IEu,I, Ie,,2l, IEh,I, IEh21 are all sufficiently large then 

so that 

~u! ~ ~h! -- ~h2R B, 

~)u2 ~ (~h 2 -- ~hiR,~ , 

qo2 = ~o,, + q~u2 -~ 27r(hiT,~ + h2T~). (2) 

qb2 is a structure seminvariant  and may therefore be 
estimated by means of  (2). 
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